Spray ignition measurements in a constant volume combustion vessel under engine-relevant conditions

Ramesh, V. Spray Ignition Measurements in a Constant Volume Combustion Vessel under Engine-Relevant Conditions. University of Wisconsin-Madison, 2017.

Pressure-based and optical diagnostics for ignition delay (ID) measurement of a diesel spray from a multi-hole nozzle were investigated in a constant volume combustion vessel (CVCV) at conditions similar to those in a conventional diesel engine at the start of injection (SOI). It was first hypothesized that compared to an engine, the shorter ID in a CVCV was caused by NO, a byproduct of premixed combustion. The presence of a significant concentration of NO+NO2 was confirmed experimentally and by using a multi-zone model of premixed combustion. Experiments measuring the effect of NO on ID were performed at conditions relevant to a conventional diesel engine. Depending on the temperature regime and the nature of the fuel, NO addition was found to advance or retard ignition. Constant volume ignition simulations were capable of describing the observed trends; the magnitudes were different due to the physical processes involved in spray ignition, not modeled in the current study. The results of the study showed that ID is sensitive to low NO concentrations (<100 PPM) in the low-temperature regime. <p> A second source of uncertainty in pressure-based ID measurement is the systematic error associated with the correction used to account for the speed of sound. Simultaneous measurements of volumetric OH chemiluminescence (OHC) and pressure during spray ignition found the OHC to closely resemble the pressure-based heat release rate for the full combustion duration. The start of OHC was always found to be shorter than the pressure-based ID for all fuels and conditions tested by ~100 ms. Experiments were also conducted measuring the location and timing of high-temperature ignition and the steady-state lift-off length by high-speed imaging of OHC during spray ignition. The delay period calculated using the measured ignition location and the bulk average speed of sound was in agreement with the delay between OHC and the pressure-based ID. Results of the study show that start of OHC is coupled to detectable heat release and the two measurements are correlated by the time required for the pressure wave to propagate at the speed of sound between the ignition site and the transducer.